

Compressor and other system component technology for R1234yf systems

Presented by Mark Mitchell
Director – Global Marketing and Technical Support
Unicla International Limited

Technical and engineering steps to R1234yf

- Following regulatory pressure, all global MVAC and vehicle manufacturer commenced the Co-operative Research Project (CRP) for an alternative to R134a.
- CRP was engineering and environmentally focussed
 administered by SAE International
- After extensive tests of hundreds of alternatives,
 R1234yf was the clear winner

Technical and engineering steps to R1234yf

- As a compressor manufacturer, the first challenge is to select and validate the lubricant
 minimum 2000 hours of testing
- Next is to check and validate the functionality of the refrigerant and how it operates in the compressor and systems where the compressor is used.
- Compliance to all necessary manufacturing and safety standards

Lubricant

- Must meet ASHRAE standards for refrigerant suitability.
- Current generation PAG and POE lubricants used in R134a found to have unacceptable chemical stability, and thermal and hydrolytic properties when used with R1234yf.
- Manufactures were quick to develop suitable double end capped PAGs.
- Di-capped PAG lubricants appear to be the major choice by OEMs for R1234yf, CO2 and electric drive MAC systems.

Lubricant

Quality evaluation: Typical test is 2000 hrs at 500hr intervals

Compressor					Cond	enser	Evaporator	
r.p.m	Discharge pressure kg/cm²	Suction pressure kg/cm ²	Discharge temp. °C	Suction temp. °C	Temp. in °C	Temp. out °C	Temp. in °C	Temp. out °C
800	14.0	3.3	60.1	17.5	61.1	48.8	34.2	20.6
2,000	15.4	2.7	69.6	16.7	69.7	51.4	31.7	19.6
3,000	13.2	1.7	87.0	14.7	87.6	50.8	27.3	7.0
3,500	14.0	1.8	88.4	17.4	91.1	52.5	27.4	8.9
1,500	12.9	2.0	68.0	12.8	70.0	52.0	29.0	9.0

Lubricant

Unicla compressors use Shrieve ZEROL HD46 due to excellent anti-wear and low hygroscopicity

		Shrieve ZEROL HD46
ties	Viscosity at 40°C (cSt)	44.8
roperties	Viscosity at 100°C (cSt)	9.70
cal pı	Viscosity Index	215
physical	Flash point (COC)	>230
	Specific Gravity (g/cc @ 20°C)	0.9895
Typical	Pour point (°C)	<-25

Comparing R1234yf to R134a

0°C

- R134a has pressure of 191.2 kpa (27.7 psi)
- R1234yf is higher at 215.30 kpa (31.2 psi)

54°C

- R134a has pressure of 1354.1 kpa (196.4 psi)
- R1234yf is lower at 1322.7 kpa (191.7 psi)

Automotive Training Solutions Pty Ltd

PRESSURE TEMPERATURE CHART

°C	R134a		HFO1234yf		°C	R134a		HFO1234yf	
٠.	kPa	PSIG	kPa	PSIG	٠.	kPa	PSIG	kPa	PSIG
-30	-16.9	-2.5	-8.71	-1.2	24	543.8	78.9	561.3	81.3
-28	-8.6	-1.3	2.79	0.4	26	583.4	84.6	599.4	86.7
-26	0.3	0	14.3	2.1	28	624.8	90.6	639.1	92.6
-24	10	1.4	26.1	3.8	30	668.2	96.9	680.4	98.6
-22	20.3	2.9	38.1	5.5	32	713.4	103.5	723.5	104.9
-20	31.4	4.6	50.6	7.3	34	760.6	110.3	768.3	111.3
-18	43.2	6.3	63.2	9.2	36	809.8	117.4	814.8	118.1
-16	55.9	8.1	76.4	11.1	38	861.2	124.9	863.2	125.1
-14	69.4	10.1	90.6	13.1	40	914.6	132.6	913.5	132.4
-12	83.8	12.2	105.5	15.3	42	970.3	140.7	965.8	140.0
-10	99.1	14.4	121.1	17.6	44	1028.3	149.1	1020.0	147.8
-8	115.4	16.7	138.3	20.0	46	1088.5	157.9	1076.2	156.0
-6	132.7	19.2	156.1	22.6	48	1151.2	167	1134.6	164.4
-4	151.1	21.9	174.7	25.3	50	1216.3	176.4	1195.1	173.2
-2	170.6	24.7	194.5	28.2	52	1283.9	186.2	1257.8	182.3
0	191.2	27.7	215.3	31.2	54	1354.1	196.4	1322.7	191.7
2	213	30.9	237.2	34.4	56	1426.9	206.9	1389.9	201.4
4	236	34.2	260.2	37.7	58	1502.4	217.9	1459.5	211.5
6	260.2	37.7	284.4	41.2	60	1580.7	229.2	1531.6	222.0
8	285.8	41.4	309.9	44.9	62	1661.9	241	1606.1	232.8
10	312.8	45.4	336.5	48.8	65	1789.1	259.5	1723.1	249.7
12	341.2	49.5	364.4	52.8	70	2016.4	292.4	1930.7	279.8
14	371	53.8	393.7	57.1	75	2263.8	328.3	2156.9	312.6
16	402.4	58.4	424.4	61.5	80	2532.6	367.3	2401.6	348.0
18	435.2	63.1	456.4	66.1	85	2824.3	409.6	2668.5	386.6
20	469.7	68.1	489.8	70.1	90	3140.7	455.5	2958.0	428.7
22	505.9	73.4	534.8	77.5	95	3484.5	505.4	3248.6	470.7

*All pressures shown are saturated vapour pressures

A test was carried out to provide a comparison of performance results from a common system operating on R134a refrigerant as compared against a same system converted to operate with OPTEON R1234yf refrigerant. The test comprised of the following components:

Refrigerant	Dupont - R134a	Dupont – OPTEON R1234yf		
Condenser	Kysor EC6	Kysor EC6		
Compressor	Unicla UP150	Unicla UP150		
Expansion valve	Eaton block type 2.0 ton – R134a comp.	Eaton block type 2.0 ton – R134a comp.		
Hose	Burgaflex 3090 series	Burgaflex 3090 series		
Hose connectors	Burgaclip with R134a service ports	Burgaclip with R1234yf service ports		
Evaporator	Carrier EM14	Carrier EM14		
Lubricant	Unidap7 – PAG46	Shrieve- Zerol HD- PAG46		
Power supply	24 volt	24 volt		

Highlights:

Test condition	Average result over 60 tests				
	- Lower discharge pressure 0.4 – 1.0 bar				
	- Lower discharge line temperature 2-4K				
R1234yf system running same refrigerant	- Higher suction pressure 0.17 -0.47 bar				
weight as R134a (1.7 kg) and compressor	- Different evaporator superheat range ±1.8K				
speed of 1500 rpm	- Lower sub cooling 4.5 – 4.8K				
	- Lower air TD across evaporator 0.7K				

- R134a and R1234yf, condenser sub-cooling and evaporator super heat table
- Unicla test 1.7kg refrigerant charge at 1500rpm

Ambient	Refrigeran t type	Suction evaporator pressure	Condenser pressure	Suction evaporator temperature	Condenser temperature	Super heat	Sub-cool
25°C	R134a	1.92 bar	10.35 bar	8.70°C	37.10°C	8.70°C	9.90°C
25°C	R134a	1.97 bar	12.37 bar	7.30°C	43.30°C	6.80°C	7.20°C
25°C	R134a	1.94 bar	12.97 bar	6.30°C	45.20°C	6.30°C	7.05°C
35°C	R134a	2.84 bar	15.08 bar	13.10°C	51.60°C	5.10°C	6.10°C
35°C	R134a	2.85 bar	17.52 bar	15.40°C	58.30°C	7.40°C	5.95°C
35°C	R134a	2.87 bar	19.58 bar	15.90°C	63.50°C	7.90°C	5.25°C
25°C	R1234-yf	2.39 bar	10.23 bar	10.90°C	42.60°C	6.90°C	2.40°C
25°C	R1234-yf	2.17 bar	11.87 bar	10.50°C	48.00°C	8.50°C	2.00°C
25°C	R1234-yf	2.35 bar	12.50 bar	10.50°C	47.70°C	6.50°C	4.30°C
35°C	R1234-yf	3.01 bar	13.84 bar	15.90°C	54.10°C	6.90°C	1.90°C
35°C	R1234-yf	3.00 bar	15.50 bar 🔪	16.70°C	58.80°C	7.70°C	2.20°C
35°C	R1234-yf	3.09 bar	16.68 bar	16.10°C	61.80°C	6.60°C	2.20°C

Higher on low side

Lower on high side

Standards

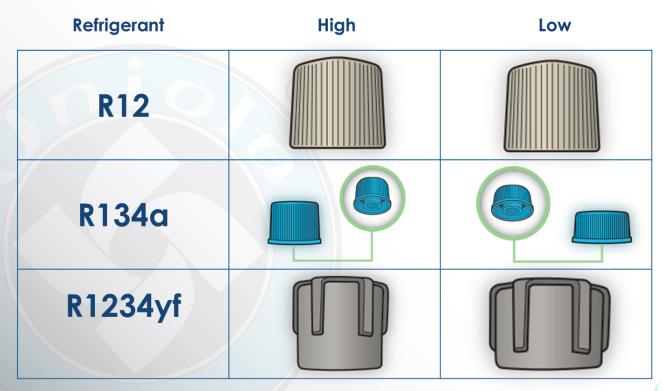
- SAE International always at the forefront of MVAC design and innovation
- Work commenced in 2003 for the search of an alternative to R134a
- Dupont and Honeywell did the chemistry SAE took the lead on system design, component upgrades and risk assessment at the vehicles' level
- Five key standards deal with new low GWP refrigerants R1234yf and R744 (CO2)

SAE standard J639

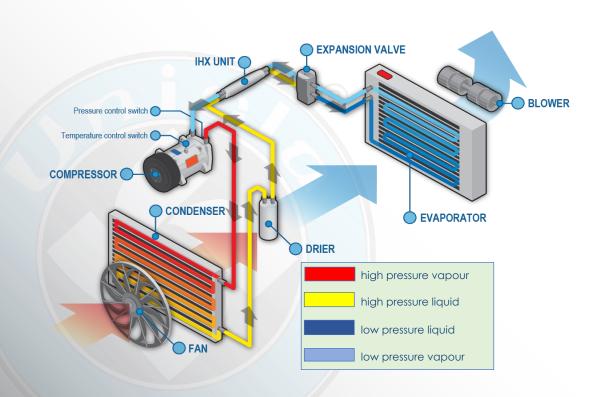
- References to 48 SAE standards
- Refers to refrigerants R134a, R1234yf, R-744
- Specifies design of fittings for R12 and R-152a
- Passenger cars only (trucks and buses not included)
- Prohibits use of any refrigerant rated less than A2L
- Provides standards for design, assembly, testing and service to minimise environmental, health and safety impacts

SAE standard J639- Service port fittings

Refrigerant	High	Low
R12	9.4	9,4
R134a	14±0.15 13±0.15 16±0.15	11±0.15 13±0.15
R1234yf	13 (0, -0.2) 15 (0, -0.2) 17 (0, -0.2)	12 (0, -0.2) 12 (0, -0.2) 14 (0, -0.2)



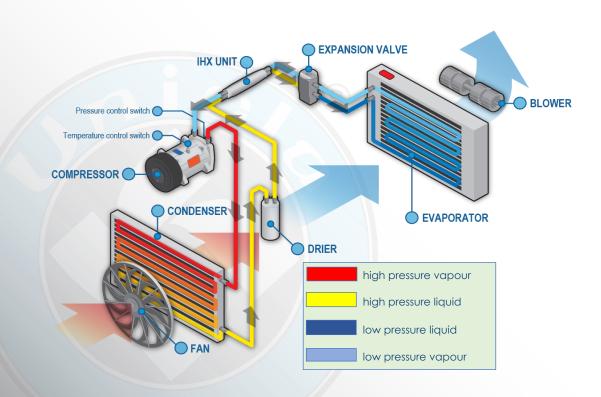
SAE standard J639- Service charge couplings



SAE standard J639- Service fitting caps

SAE standard J639 - R1234yf maximum working pressure

High side:

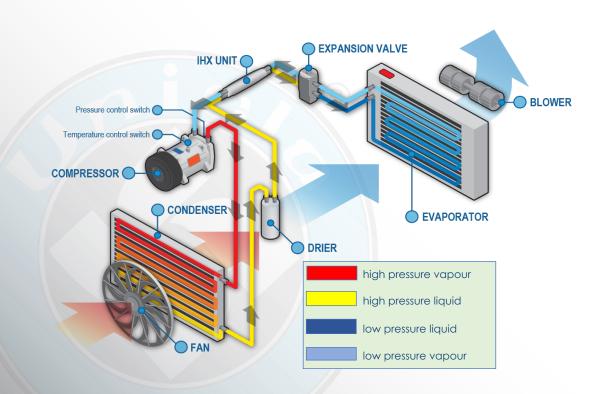

- must not exceed 4.14 mPa (600 psig) gauge pressure during operation
- must not exceed limit of any system component
- pressure must be limited by compressor operation before relief valve on burst disc

Low side:

 must not exceed 1.46 mPa (according to saturation pressure of R1234yf at 56°C) with system on or off

SAE standard J639 - R1234yf maximum system burst pressure

High side:


 new components must not be less than two times the working pressure of 8.24 mPA (1200 psig)

Low side:

 new components must not be less than two times allowable pressure with system on or off – 2.92 (423psig) mPa

SAE standard J639 - R1234yf maximum working temperature

High side:

- discharge outlet at compressor and line must not exceed 150°C during continuous operation
- discharge outlet must not exceed 160°C during intermittent (5 minute intervals) during operation

Low side:

must not exceed 56°C with system on or off

SAE standard J639 - compressor design and requirements

SAE standard J639 -

R1234yf maximum burst pressure of compressor and adjacent cavities

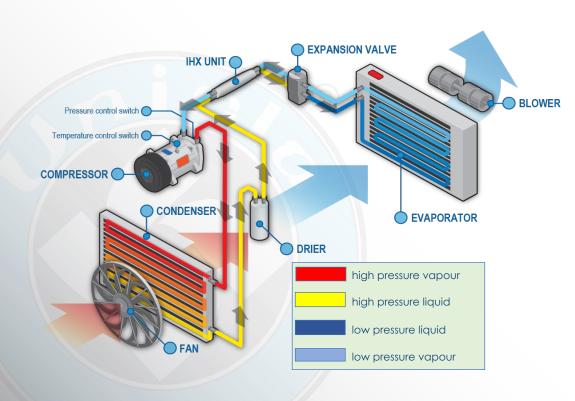
SAE standard J639 - R1234yf maximum burst pressure of compressor and adjacent cavities

1200 psi (8.24 mPa) 200 psi (1.38 mPa)

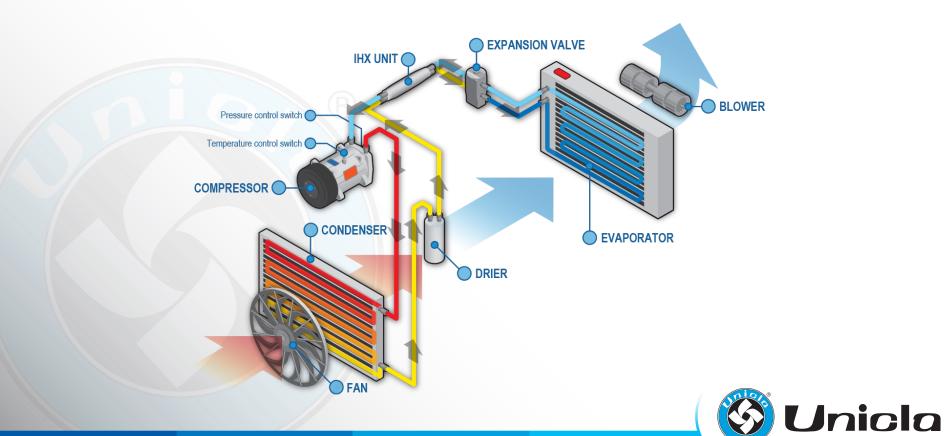
1200 psi (8.24 mPa)

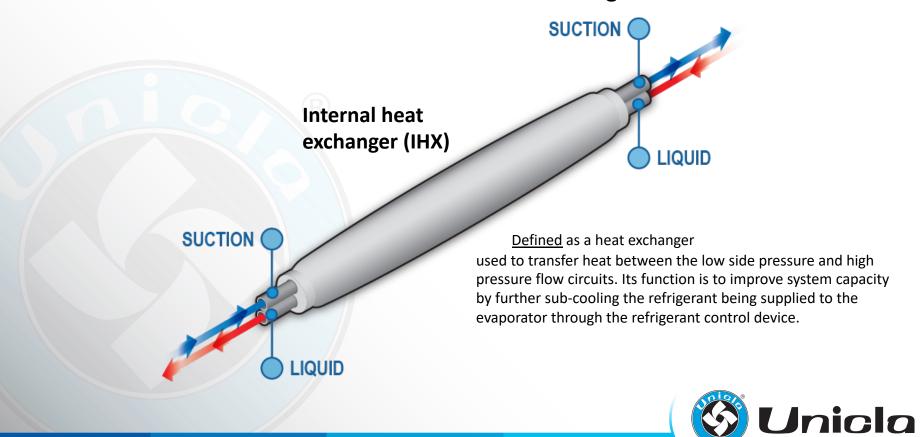
200 psi (1.38 mPa)

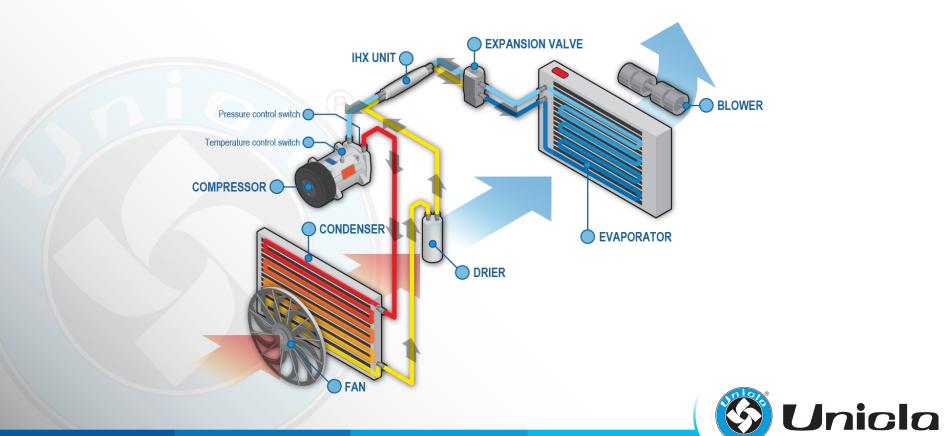
- adjacent cavities (low side next to high side) shall be burst tested at maximum pressures
- high side must be tested at twice the maximum high side working pressure which is 1200 psi (8.24 mPa) while the low side is maintained at 1.38 mPa

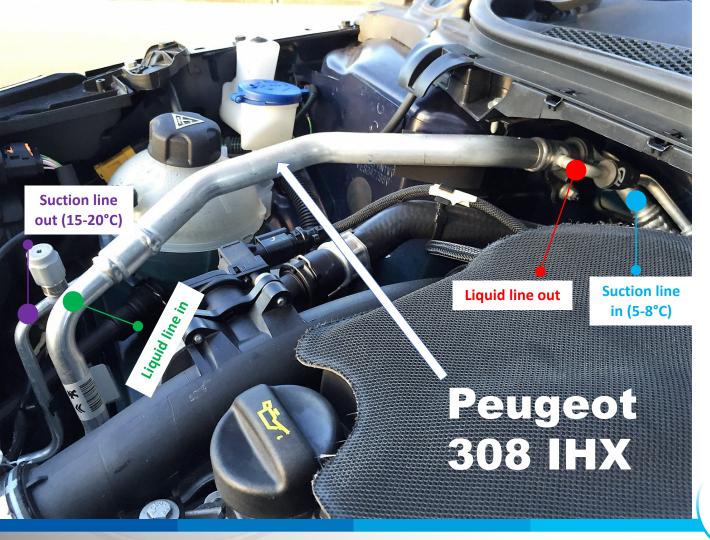

SAE standard J639 - R1234yf compressor design requirements

- must be inoperative with no power transmission or power if failed on drawing excessive torque
- managed by lock sensor or permanent clutch cutout (designed to eliminate catastrophic failure of compressor components causing refrigerant leakage)
- must have pressure relief < 4.14
 mPa (600 psig) and self sealing

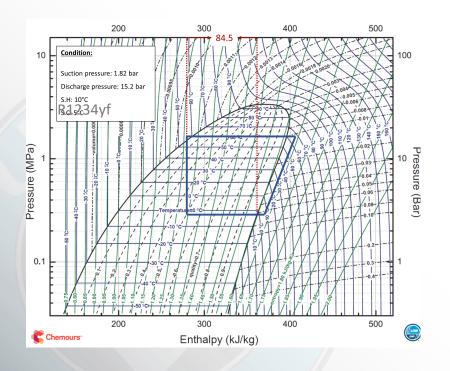

SAE standard J639 - R1234yf refrigerant line routing and connections

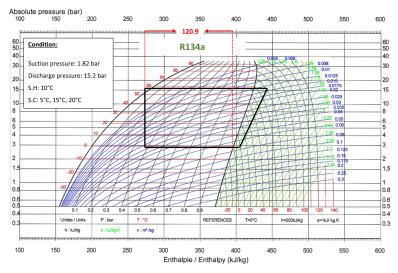



- must be located outside the passenger compartment and outside the cabin airflow path (plenum) – or –
- design to sufficiently present no leakage if inside the cabin or cabin air flow path
- service manual must state a process to prevent any leakage into cabin or plenum
- service fittings must have ease of access for technicians
- piping must be sufficiently robust to withstand connect/disconnect procedures



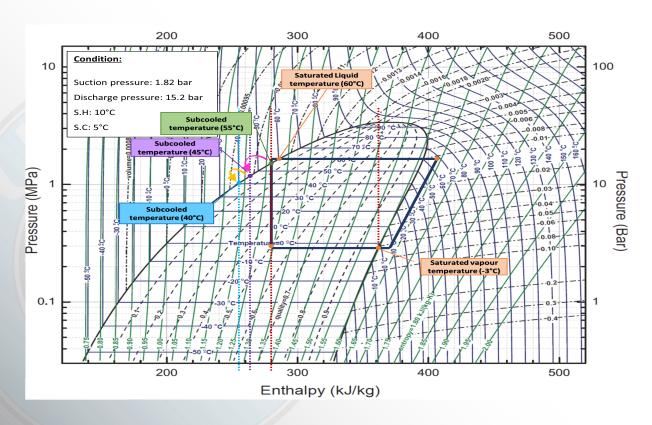
SAE standard J639 - R1234yf compressor design requirements

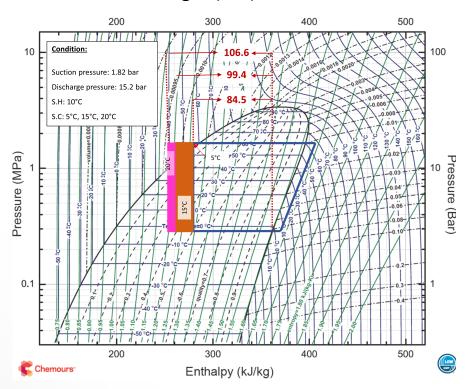



SAE standard J639

internal heat exchanger (IHX)

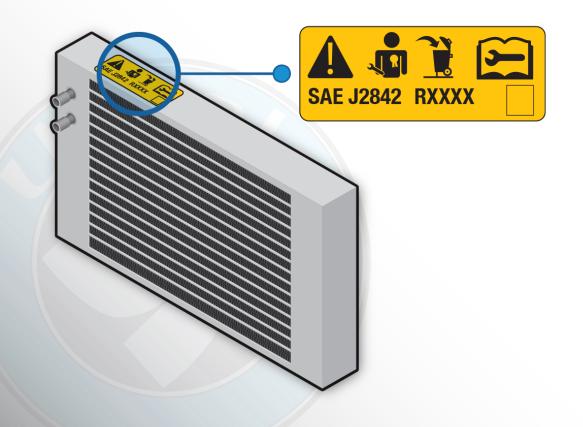
IHX- not insulated due to no sweating (the temperature never reaches the dew point)




- R1234yf absorbs slightly less energy per unit of flow in a refrigerant cycle.
- R134a absorbs 120.9 kj/kg
- R1234yf absorbs 84.5 kj/kg

- With extra subcooling of 10 –
 R1234yf absorbs 99.4 kj/kg
- With extra subcooling of 15 R1234yf absorbs 106.6 kj/kg

SAE J2842


R1234yf and R744 design criteria and certification for OE mobile air conditioning evaporator and service replacements:

- provides a testing framework for evaporator manufacturers to meet J639
- describes labelling requirements
- demands that all evaporator manufacturers build and test to this standard

SAE J2842

- requirements include standards for strength, corrosion, durability, fatigue resistance, burst pressure and design (2.92 mPa – 423psig)
- must be labelled
- must meet J639 as one of the MAC components
- must never be repaired, re-worked or reused
- must have permanent label, stamp or etching
- label must be two colour Pantone orange (151) and black

